(8+2x)(8+2x)=(x^2+48)

Simple and best practice solution for (8+2x)(8+2x)=(x^2+48) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (8+2x)(8+2x)=(x^2+48) equation:



(8+2x)(8+2x)=(x^2+48)
We move all terms to the left:
(8+2x)(8+2x)-((x^2+48))=0
We add all the numbers together, and all the variables
(2x+8)(2x+8)-((x^2+48))=0
We multiply parentheses ..
(+4x^2+16x+16x+64)-((x^2+48))=0
We calculate terms in parentheses: -((x^2+48)), so:
(x^2+48)
We get rid of parentheses
x^2+48
Back to the equation:
-(x^2+48)
We get rid of parentheses
4x^2-x^2+16x+16x+64-48=0
We add all the numbers together, and all the variables
3x^2+32x+16=0
a = 3; b = 32; c = +16;
Δ = b2-4ac
Δ = 322-4·3·16
Δ = 832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{832}=\sqrt{64*13}=\sqrt{64}*\sqrt{13}=8\sqrt{13}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-8\sqrt{13}}{2*3}=\frac{-32-8\sqrt{13}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+8\sqrt{13}}{2*3}=\frac{-32+8\sqrt{13}}{6} $

See similar equations:

| -14x-14x=56 | | 12w+-1=11w | | (2y-1)=3 | | -(m-1)=-5-7m | | 3x+9x=-48 | | 4/3e-5/9e-17=11 | | -5b+5+4b=-2 | | x-5=-5x-5(7x+1) | | -5(7x+1)=275 | | 100=4x+28 | | -7(4-8k)=-2k+30 | | 4s+-9s+12s+-5s+-18s+-5s=11 | | 1​2 r−3=3(4−23​ r)r= | | -16-2x=-7(5x+7) | | 1+5y=17 | | 2+6x=5x+5 | | 2m-5-5m=7 | | 5y/8+2=7y/12 | | -34-6x=8(1-6x) | | -2x+5=-2x+4 | | 25=1/2x+5* | | 2a+31=-11-a | | 9+5x=7(8-6x) | | (2x+1/3x)^9=0 | | 17+5v=8(4v-8) | | 4x+8=x+13 | | 50=3x+6x+5 | | -9y-93=10y | | 7x-92+6x+12=18 | | 3+2x=4-7x | | 24-14x=1 | | 3​2+b=47​ |

Equations solver categories